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Challenge

Aim:
Datasets at multiple locations are available for analysis.
The aim is to do a statistical analysis using all data.

Solution:

- Data sharing

- Use one dataset only

- Federated Learning (machine learning community)
- Federated Inference (statistical community)
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Data sharing

Each location sends their local data to a central

server where the datasets are combined for Fon Fon son
statistical analysis.

Problems:

- Privacy of the patients %

- Data sharing agreements I~
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Separate Analyses
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Loss of information, power, generability
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Federated Learning

Federated Learning strategies have been around for some time, but it was
not developed with medical applications in mind.

As more medical data becomes available and the need for privacy-
preserving methods grows, federated learning methods are increasingly
finding its way into healthcare.
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Federated Learning
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Federated Learning
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Federated Learning
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Federated Learning

Especially the fact that the algorithm works cyclic, can be a
disadvantage:

* Has to be done in a semi-automatic way (cross firewalls)

* All centers need to have the data + software available at the same
time

*  The estimates cannot be easily updated if one center joins later.
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Federated Inference

our (statistical) proposal
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Federated Inference
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Federated Inference in steps

1.

w

Decide which statistical model should be estimated to answer the
research question.

In each medical center the same statistical analysis is performed.

The inference results are sent to the central server.

In the central server the results are aggregated to estimate the global
statistical model: A weighted average of the local estimates is computed.
Weights depend on the local sample sizes and accuracy of the estimates

With this method the final results are approximately equal to that what
would have been found if the analysis was performed on the combined data
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Example, a pilot study

1.  Swedish MS registry split in two parts: (1) Stockholm, (2) rest of Sweden.

2. Outcome: SPMS (Secondary progressive MS) vs RRMS (Relapsing
Remitting MS).

3. Variables: age, gender, location (Stockholm, yes/no)

4. Estimate a logistic regression model that includes these three variables.
Estimation should be done in a federated way
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Example, a pilot study

Estimate SE
comb. FedL BFI | comb. FedL BFI
intercept -7.620 -7.620 -7.571 | 0.124 0.124 0.124
age 0.114 0.114 0.113 | 0.002 0.002 0.002
sex -0.125 -0.125 -0.127 | 0.047 0.047 0.047
Stockholm | 0.225 0.225 0.228 | 0.049 0.049 0.050

FedL: Federated Learning strategy

SPMS: outcome = 1. RRMS: outcome = 0.

men: sex=0, women: sex=1.

patient in Stockholm region: Stockholm =1

patient in the rest of the country: Stockholm =0
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Extensions

The methodology has been extended to deal with:
* Heterogeneous populations/models

e Clustering among locations

e Unobserved Features

* Many features

* Federated Causal inference (ongoing)

* Small Centers (ongoing)
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Next Project

Study the effectiveness of rituximab in MS patients.

Observational Data:
multiple MS registries

Statistical Methods for Federated Causal Inference:

1. propensity score model (for the probability to be in the treatment group)
2. weighted analysis

Radboudumc

university medical center



Statistical Analysis

Statistical Methods for Causal Inference:

1. propensity score model (for the probability
to be in the treatment group)

2. weighted analysis

Cohort
Control Treatment

/4 1/4 1/4 3/4 1/4 3/4 3/4 3/4

rere feRe

2/3 2/3 2/3 2 2 2/3 2/3 2/3

Pseudo-population

Peee peee

modified from: https://doi.org/10.1038/s41592-025-02629-y
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Propensity Score Model
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In every medical center a model for the ﬁ D
propensity scores is estimated (logistic :

regression model, accounting for heterogeneity) <

These models are combined in the central \\ Uﬁ
server with the BFI methodology \ v

)

central server
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Send back

In every medical center a model for the ﬁ ﬁ ﬁ
=

propensity scores is estimated (logistic E

regression model, accounting for heterogeneity)

These models are combined in the central /\f

server with the BFI methodology m\*‘ /ﬁ
central server

I
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Weighted Analysis

In every medical center the weights are ﬁ ﬁ ﬁ

computed and a weighted analysis is performed. S @
Tt W D B I
The results are sent to the central server. _|£j

These models are combined in the central \ v /Pi/
server W|th the BFI meth0d0|0gy central server

N

Note: extra pass needed
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Comparison FL and Fli
| (Federatedleaning | Federated Inference _

Accuracy exact approximation
One pass / iterations iterative algorithm one pass
Updating not possible possible
Flexibility restricted many analyses possible
Automatic / hands-on semi-automatic hands-on

ICT + security dealing with firewalls E-mail with numbers
Software multiple possible R-software
Many researchers possible more difficult
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Conclusion

Which method (FL or FI) should we use?

Depends on the aim, setting and the research questions.
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