### **Bayesian Federated Inference**

A statistical approach

Marianne Jonker, Radboudumc, Nijmegen In collaboration with: Hassan Pazira, Emanuele Massa, **Zoë van den Heuvel**, Ton Coolen



## Challenge

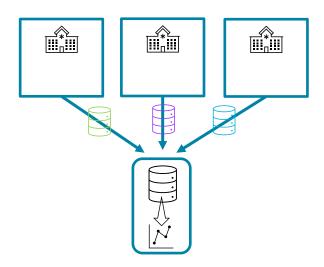
#### Aim:

Datasets at multiple locations are available for analysis.

The aim is to do a statistical analysis using all data.

#### **Solution:**

- Data sharing
- Use one dataset only
- Federated Learning (machine learning community)
- Federated Inference (statistical community)




# **Data sharing**

Each location sends their local data to a central server where the datasets are combined for statistical analysis.

#### **Problems:**

- Privacy of the patients
- Data sharing agreements



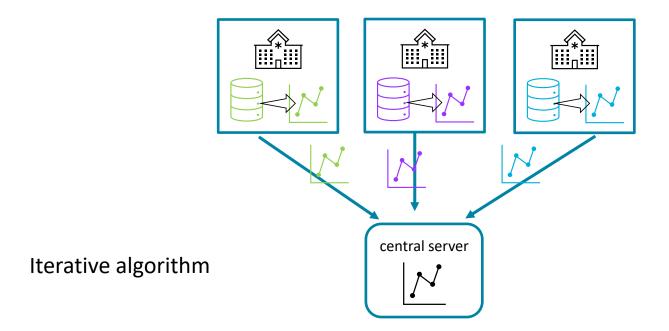


# **Separate Analyses**

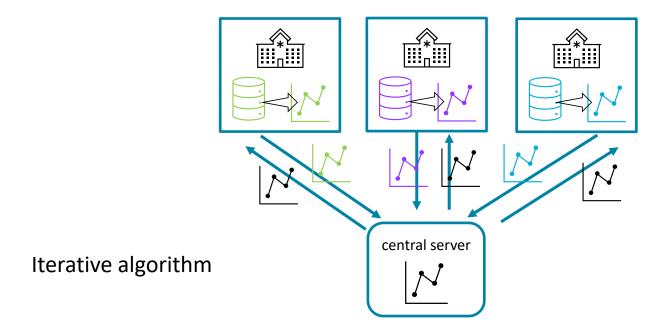






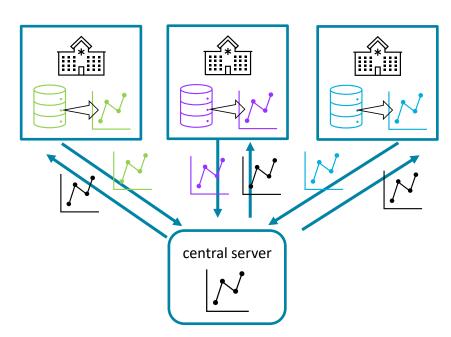

Loss of information, power, generability




Federated Learning strategies have been around for some time, but it was not developed with medical applications in mind.

As more medical data becomes available and the need for privacypreserving methods grows, federated learning methods are increasingly finding its way into healthcare.

















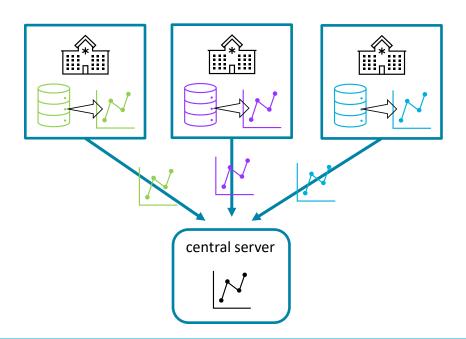

Especially the fact that the algorithm works cyclic, can be a disadvantage:

- Has to be done in a semi-automatic way (cross firewalls)
- All centers need to have the data + software available at the same time
- The estimates cannot be easily updated if one center joins later.



#### **Federated Inference**

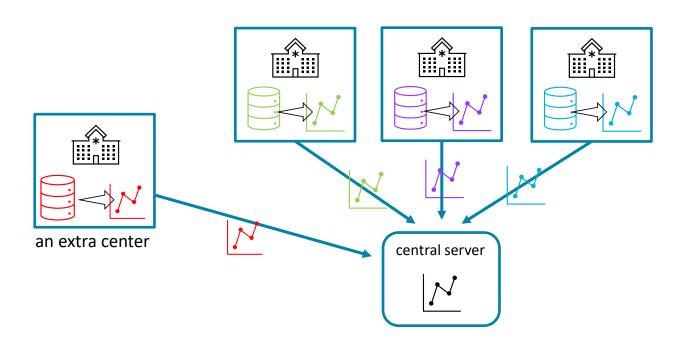
our (statistical) proposal








#### **Federated Inference**


our (statistical) proposal





## **Federated Inference**

our (statistical) proposal





### **Federated Inference in steps**

- 1. Decide which statistical model should be estimated to answer the research question.
- 2. In each medical center the same statistical analysis is performed.
- The inference results are sent to the central server.
- 4. In the central server the results are aggregated to estimate the global statistical model: A weighted average of the local estimates is computed. Weights depend on the local sample sizes and accuracy of the estimates

With this method the final results are **approximately** equal to that what would have been found if the analysis was performed on the combined data



## Example, a pilot study

- 1. Swedish MS registry split in two parts: (1) Stockholm, (2) rest of Sweden.
- 2. Outcome: SPMS (Secondary progressive MS) vs RRMS (Relapsing Remitting MS).
- 3. Variables: age, gender, location (Stockholm, yes/no)
- Estimate a logistic regression model that includes these three variables.
  Estimation should be done in a federated way



## Example, a pilot study

|           | Estimate |        |        | SE    |       |       |
|-----------|----------|--------|--------|-------|-------|-------|
|           | comb.    | FedL   | BFI    | comb. | FedL  | BFI   |
| intercept | -7.620   | -7.620 | -7.571 | 0.124 | 0.124 | 0.124 |
| age       | 0.114    | 0.114  | 0.113  | 0.002 | 0.002 | 0.002 |
| sex       | -0.125   | -0.125 | -0.127 | 0.047 | 0.047 | 0.047 |
| Stockholm | 0.225    | 0.225  | 0.228  | 0.049 | 0.049 | 0.050 |

FedL: Federated Learning strategy

SPMS: outcome = 1. RRMS: outcome = 0.

men: sex=0, women: sex=1.

patient in Stockholm region: Stockholm = 1 patient in the rest of the country: Stockholm = 0



#### **Extensions**

The methodology has been extended to deal with:

- Heterogeneous populations/models
- Clustering among locations
- Unobserved Features
- Many features
- Federated Causal inference (ongoing)
- Small Centers (ongoing)



### **Next Project**

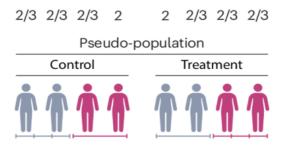
Study the effectiveness of rituximab in MS patients.

**Observational Data:** 

multiple MS registries

Statistical Methods for Federated Causal Inference:

- 1. propensity score model (for the probability to be in the treatment group)
- 2. weighted analysis



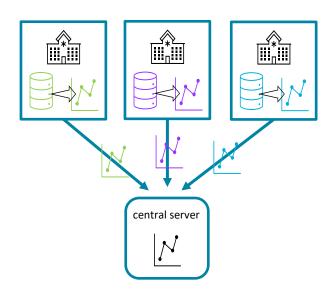

#### **Statistical Analysis**

#### Statistical Methods for Causal Inference:

- 1. propensity score model (for the probability to be in the treatment group)
- 2. weighted analysis





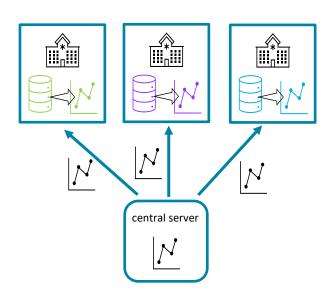

modified from: https://doi.org/10.1038/s41592-025-02629-y



### **Propensity Score Model**

In every medical center a model for the propensity scores is estimated (logistic regression model, accounting for heterogeneity)

These models are combined in the central server with the BFI methodology





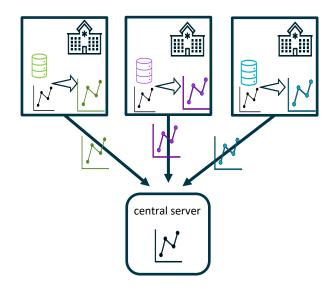

#### Send back

In every medical center a model for the propensity scores is estimated (logistic regression model, accounting for heterogeneity)

These models are combined in the central server with the BFI methodology






## **Weighted Analysis**

In every medical center the weights are computed and a weighted analysis is performed.

The results are sent to the central server.

These models are combined in the central server with the BFI methodology

Note: extra pass needed





# **Comparison FL and FI**

|                       | Federated Learning     | Federated Inference    |  |
|-----------------------|------------------------|------------------------|--|
| Accuracy              | exact                  | approximation          |  |
| One pass / iterations | iterative algorithm    | one pass               |  |
| Updating              | not possible           | possible               |  |
| Flexibility           | restricted             | many analyses possible |  |
| Automatic / hands-on  | semi-automatic         | hands-on               |  |
| ICT + security        | dealing with firewalls | E-mail with numbers    |  |
| Software              | multiple possible      | R-software             |  |
| Many researchers      | possible               | more difficult         |  |



#### **Conclusion**

Which method (FL or FI) should we use?

Depends on the aim, setting and the research questions.



#### References

- Jonker MA, Pazira H, Coolen ACC. Bayesian Federated Inference for estimating StatisticalModels based on non-shared multicenter data. Statistics in Medicine 43 (12), 2421-2438.2024. <a href="https://doi.org/10.1002/sim.10072">https://doi.org/10.1002/sim.10072</a>
- Jonker MA, Pazira H, Coolen ACC. Bayesian Federated Inference for regression modelsbased on non-shared medical center data. Research Synthesis Methods, Volume 16 (2),2025, 383 423 DOI: <a href="https://doi.org/10.1017/rsm.2025.6">https://doi.org/10.1017/rsm.2025.6</a>
- Pazira H, Massa E, Weijers JAM, Coolen ACC, Jonker MA. Bayesian Federated Inference for Survival Models. Journal of Applied Statistics. 2025 DOI:10.1080/02664763.2025.2511932
- Pazira H, Massa E, Jonker MA. R-package BFI and users manual, 2024.
  Number of downloads: > 9400 since its release June 2024.
- Massa E, Jonker M.A. Federated Inference with missing features. Conference paper:
  The International Conference on Federated Learning Technologies and Applications

